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We present an efficient diagrammatic method to describe nonlocal correlation effects in lattice fermion
Hubbard-type models, which is based on a change of variables in the Grassmann path integrals. The new
fermions are dual to the original ones and correspond to weakly interacting quasiparticles in the case of strong
local correlations in the Hubbard model. The method starts with dynamical mean-field theory as a zeroth-order
approximation and includes nonlocal effects in a perturbative way. In contrast to cluster approaches, this
method utilizes an exact transition to a dual set of variables. It therefore becomes possible to treat vertices of
an effective single-impurity problem as small parameters. This provides a very efficient interpolation between
bandlike weak-coupling and atomic limits. The method is illustrated on the two-dimensional Hubbard model.
The antiferromagnetic pseudogap, Fermi-arc formations, and non-Fermi-liquid effects due to the Van Hove
singularity are correctly reproduced by the lowest-order diagrams. Extremum properties of the dual fermion
approach are discussed in terms of the Feynman variational principle.
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I. INTRODUCTION

One of the most successful theories of strongly correlated
fermions on a lattice is dynamical mean-field theory
�DMFT�.1 Physically, this approach treats the local spin and
orbital fluctuations of the correlated electrons in a correct
self-consistent way, while the spatial intersite correlations on
the lattice are neglected. The nonperturbative DMFT ap-
proach is successful because a number of the most important
correlation effects are indeed related to local fluctuations.
For example, DMFT describes correctly phenomena such as
the local moment formation in itinerant magnets,2 some as-
pects of Kondo physics,3 and the Mott insulator-to-metal
transition on a lattice with a large connectivity in high-
dimensional materials.1

On the other hand, there is increasing evidence that the
nonlocality of spatial correlations plays an important role,
particularly for the Luttinger-liquid physics of low-
dimensional correlated systems,4 d-wave pairing in quasi-
two-dimensional �2D� cuprates,5,6 and non-Fermi-liquid be-
havior due to Van Hove singularities in two-dimensional
systems.7–9 Moreover, angle-resolved photoemission spectra
of three-dimensional ferromagnetic iron shows appreciable
k-dependent self-energy effects.10

The most obvious generalizations of DMFT that take into
account the short-range nonlocal fluctuations are the so-
called cluster-DMFT �CDMFT� approximations, in real or k
space.11,12 In these methods, correlations are assumed to be
localized within a cluster including several lattice sites. Clus-
ter methods do catch the basic physics of d-wave pairing and
antiferromagnetism in high-Tc superconductors13,14 and the
effects of intersite Coulomb interaction in transition-metal
oxides.15 At the same time, the complicated k dependence of
the self-energy close to the Fermi surface, giving rise to
Luttinger-liquid formation, is related to long-range fluctua-

tions and therefore cannot be described within cluster ap-
proaches. For the same reason, cluster methods hardly can
handle the effects due to Van Hove singularities or nesting.7,9

Another drawback of the cluster methods is that the specific
choice of the cluster and corresponding self-consistency con-
dition is not unique. Different self-consistency conditions
�e.g., dynamical cluster approximation �DCA� �Ref. 12� and
free-cluster CDMFT �Ref. 11�� or periodization schemes
�e.g., self-energy and cumulant periodization14� can result in
physically different solutions. For example, the critical tem-
perature of the d-wave superconducting transition of the
doped Hubbard model is different in DCA calculations12 and
for then 2�2 free cluster.14

The present paper is devoted to an alternative extension of
DMFT, which operates with a single-site impurity problem
and treats spatial nonlocality in a diagrammatic way. Let us
first recall the key DMFT equations. Formally, the assump-
tion of local correlations means that the environment of a
correlated atom can be replaced with a Gaussian effective
medium. Consequently, the lattice problem reduces to the
impurity problem. The latter is described by the effective
impurity action

Simp = Sat + �
�,�

��c�,�
� c�,�, �1�

where Sat is an action of the isolated or bare atom, and the
second term is the hybridization due to the rest of the lattice.
An important property of the DMFT approach is that this
hybridization function has nontrivial frequency dependence,
so that the approximation catches the physics of local fluc-
tuations of spin, charge, and orbital degrees of freedom. For
example, it is vital for the description of Kondo physics.3

It is obvious that the impurity problem is much simpler
than the original lattice one. Nowadays, a number of numeri-
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cally efficient impurity solvers are available. In particular,
these solvers allow one to calculate the Green’s function of
the impurity problem g�,� on the Matsubara frequencies’
axis. This is the only property of the impurity problem en-
tering in the DMFT self-consistent equations. The DMFT
approximation for the Green’s function of the initial lattice
problem corresponds to the following expression:

G�k�
DMFT =

1

g�,�
−1 + ��,� − �k

. �2�

One can see from this equation that the self-energy is local in
DMFT since the momentum dependence of �k is not renor-
malized. The hybridization function � satisfies the self-
consistency condition of DMFT,

Gr=0,�,�
DMFT = g�,�, �3�

where Gr=0=N−1�kGk is the local part of Green’s function
�2� of the lattice with N sites.

In order to understand the main idea of the present work,
let us first describe in a simple way DMFT condition �3�. If
we consider the case of a truly Gaussian system, then the
DMFT approach becomes exact. For this case, Eq. �3� is
trivial. Indeed, to obtain the impurity problem for the site j,
one integrates out truly Gaussian degrees of freedom for
other sites. This exact procedure does not change the prop-
erties of the electron motion at the site j, so the local part of
the Green’s function before integration must equal the
Green’s function after the integration, GR=0=g. Turning back
to the general case of a non-Gaussian ensemble, we note that
among different properties of the impurity model, the DMFT
scheme uses only the local Green’s function g��. Once g�� is
known, the approximation does not differ between Gaussian
and non-Gaussian cases. Therefore, if a certain equation for
g�� is established for the Gaussian limit, it must also remain
valid for the general case.

As it follows from the previous discussion, the DMFT
equations are essentially the formulas for the Gaussian limit,
renormalized in terms of the Green’s function of the impurity
problem. It turns out that the resulting theory works well, not
only in the case of weakly interacting systems, but also in the
atomic limit case, which is very different from a Gaussian
system. A good interpolation between the two different limits
is a key advantage of the DMFT approach.

Starting with the above interpretation of DMFT, it is natu-
ral to discuss a possible extension of this theory. Such an
extension should be based on the perturbation series near the
Gaussian limit, renormalized in terms of the impurity prob-
lem. The lowest-order term of such a theory should restore
the DMFT result, whereas higher-order corrections would
describe spatial nonlocality. A properly constructed theory of
this kind would describe both short- and long-range fluctua-
tions and will not suffer from the periodization problems of
cluster DMFT.

Unfortunately, the straightforward construction of such an
extension meets serious difficulties. The problem is that the
extension is not unique. Beyond DMFT, there are many ways
to choose the renormalization procedure, to define the hy-
bridization function for the impurity problem and other

quantities. One can formulate the major requirements for the
desirable nonlocal correlated theory. They include the fol-
lowing:

�a� At least in the Gaussian and atomic limits, the theory
should become a regular series around DMFT, with an ex-
plicit small parameter.

�b� The basic conservation laws should be fulfilled in the
theory.

�c� The choice of hybridization function should be opti-
mal, in a certain sense.

�d� There should be good practical convergence of the
series: the leading corrections should capture most of the
nonlocal physics.

�e� Last but not least, the equations of the theory must be
easy enough for practical calculations.

There have been several previous attempts to construct a
proper theory of this kind.16–18 These approaches require a
solution of ladderlike integral equations for the complete ver-
tex � and the subsequent use of the Bethe-Salpeter equation
to obtain the Green’s functions. The first step exploits the
vertex part of the effective impurity problem, whereas the
second step uses just the bare interaction parameter U. We do
not know of detailed tests of these approaches,16–18 but we
suspect that the presence of bare U in the theory makes it
suitable for the metallic phases only. We also note that lad-
derlike integral equations are hard for practical calculations.

In this paper, we describe in detail a formalism fulfilling
all the criteria from the above list. A preliminary version of
this method was published in Ref. 19. The method is based
on the transition to the new set of variables, called the dual
ensemble. The procedure utilizes a Hubbard-Stratonovich
transformation for the Gaussian part of the action. Several
years ago, this trick was first proposed for classical fluctua-
tion fields.20 For a strong-coupling expansion of the Hubbard
model around the atomic limit without hybridization func-
tion, the equivalent Hubbard-Stratonovich transformation
has been proposed in different papers.21,22 A similar proce-
dure for fermions with general nonlocal interactions has been
discussed recently.23 Also we would like to mention a much
earlier work24 for classical fields. Although it used a different
formalism,24 the resulting diagram series resembles ours.

The paper is organized as follows. Section II is devoted to
the general theoretical framework. Section III describes the
application of the nonlocal theory to the problem of the an-
tiferromagnetic pseudogap and the formation of Fermi arcs
in the two-dimensional Hubbard model for high-temperature
superconducting cuprates. In Appendix A we discuss how
the many-particle excitations for the initial and dual systems
are related. In Appendix B the functional-minimization deri-
vation of the self-consistent DMFT condition is discussed.

II. DUAL FERMION FORMALISM: BEYOND DMFT

A. Definitions

We start from the two-dimensional Hubbard model with
the corresponding imaginary-time action
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S�c,c�� = �
�k�

��k − � − i��c�k�
� c�k� + U�

i
�

0

	

ni↑
ni↓
d
 .

�4�

Here 	 and � are the inverse temperature and chemical
potential, respectively, �= �2j+1�� /	, with j=0, �1, . . .,
are the Matsubara frequencies, 
 is imaginary time, and
�= ↑ ,↓ is the spin projection. The bare dispersion law is
�k=−2t�cos kx+cos ky�. c� ,c are Grassmann variables, and
ni�
=ci�


� ci�
, where the indices i and k label sites and quasi-
momenta.

In the spirit of the DMFT, we introduce a single-site ref-
erence system �an effective impurity model� with the action

Simp = �
�,�

��� − � − i��c�,�
� c�,� + U�

0

	

n↑
n↓
d
 , �5�

where �� is a yet undefined hybridization function describ-
ing the interaction of the effective impurity with a bath. We
assume that all properties of the impurity problem such as
single-particle Green’s function gw and higher momenta can
be calculated. In particular, we will use the fourth-order ver-
tex 
1234

�4� =g11�
−1 g22�

−1 ��1�2�3�4�−g1�4�g2�3�+g1�3�g2�4��g3�3
−1 g4�4

−1 .
�Here, � is a two-particle Green’s function of the impurity
problem, and indices stand for a combination of � and �; for
example, g11� means g�1,�1,�1�,�1�

.� Our goal is to express the

Green’s function G�k and other properties of the lattice prob-
lem of Eq. �4� via the quantities for the impurity problem.

B. Dual variables: Exact formulas

Since � is independent of k, lattice action �4� can be rep-
resented in the following form:

S�c,c�� = �
i

Simp�ci,ci
�� − �

�k�

��� − �k�c�k�
� c�k�. �6�

We utilize a dual transformation to a set of new Grass-
mann variables f , f�. The identity

eA2c�k�
� c�k� = �A

�
�2� e−��c�k�

� f�k�+f�k�
� c�k��−�2A−2f�k�

� f�k�

�df�k�
� df�k� �7�

is valid for arbitrary complex numbers A and �. We chose
A2= ���−�k� for each set of indices � ,k ,�. The quantity �
remains yet unspecified, but we require it to be dispersion-
less; �=��,�.

With this identity, the partition function of the lattice
problem Z=	e−S�c,c��Dc�Dc can be presented in the form Z
=		e−S�c,c�,f ,f��Df�DfDc�Dc, where

S�c,c�, f , f�� = − �
�k

ln����
2 ��� − �k�� + �

i

Simp�ci,ci
��

+ �
�k�

�����f�k�
� c�k� + c�k�

� f�k��

+ ���
2 ��� − �k�−1f�k�

� f�k�� . �8�

As a next step, we establish an exact relation between the
Green’s function of the initial system G
−
�,i−i�=−
Tc
ic
�i�

� �

and that of the dual system G
−
�,i−i�
dual =−
Tf
i f
�i�

� �. To this
aim, we can replace �k→�k+���k with a differentiation of
the partition function with respect to ���k. Since we have
two expressions for actions �4� and �8�, one obtains

G�,k = ��� − �k�−1���G�,k
dual������ − �k�−1 + ��� − �k�−1.

�9�

Similar relations hold also for higher-order momenta, as Ap-
pendix A describes.

The crucial point is that the integration over the initial
variables ci

� ,ci can be performed separately for each lattice
site since � is local and �k�fk

�ck+ck
�fk�=�i�f i

�ci+ci
�f i�. For a

given site i, one should integrate out ci
� ,ci from the action

that equals

Ssite�ci,ci
�, f i, f i

�� = Simp�ci,ci
�� + �

�

����f�
� c� + c�

� f�� .

�10�

We finally obtain an action S depending on the new variables
f , f� only:

S�f , f�� = − �
�k

ln����
−2 ��� − �k�� − �

i

ln zi
imp

+ �
�k�

������� − �k�−1 + g�����f�k�
� f�k� + �

i

Vi,

�11�

where zi
imp=	e−Simp�ci

�,ci�Dci
�Dci, and the dual potential Vi

�V�f i
� , f i� is defined from the expression

� e−Ssite�ci
�,ci,f i

�,f i�Dci
�Dci

= zi
imp exp��

��

���
2 g�f�i�

� f�i� − V�f i, f i
��� . �12�

The Taylor series for V�f i , f i
�� can be obtained from the ex-

pansion of this definition in powers of f i , f i
�. One can see that

Eq. �12� defines V in such a way that this series starts from
the quartic term, �f�f�f f . Later on we take, for convenience,

��� = g�
−1, �13�

as it gives a particularly simple form of V. In this case the
leading term in V is − 1

4
1234
�4� f1

�f2
�f3f4. Further Taylor-series

terms yield similar combinations including 
�n� of higher or-
ders.

Thus we see that in the dual action, the interaction terms
remain localized in space, but they are nonlocal in imaginary
time since, for example, 
�4� depends on the three indepen-
dent Matsubara frequencies. Except for this point, action �11�
formally resembles Eq. �4�.

There is a point which is worthwhile to discuss here: one
can formally apply transformation �7� with some new hy-
bridization function to dual system �11�, and thus obtain a
sequence of changes to new variables. It is useless, however,
since mathematically, these transformations form a group. It
is easy to show that any sequence of transformation �7� cor-
responds to a single change of variables with a certain �.
Moreover, there is an inverse change of variables that allows
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one to obtain S�c ,c�� back from the S�f , f��. It is given just
by Eq. �7� with A replaced with �A−1.

C. Gaussian approximation for dual ensemble and the relation
to DMFT

Since the transformation from initial system �4� to action
�11� contains no approximations, it is equally hard to de-
scribe exactly the properties of c� ,c fermions as thereof dual
fermions. The main idea of switching to the new variables is
that for a properly chosen �, correlation properties of the
f� , f system are simpler than for the c� ,c original model. In
other words, the magnitude of the nonlinear part in the dual
action can be effectively decreased by the proper choice of
�. To illustrate this statement, let us just neglect V in Eq.
�11�. We denote the Green’s function for such Gaussian ap-
proximation for the dual potential with calligraphic letters.
Expression �11� corresponds to

G�,k
dual = − g����� − �k�−1 + g��−1g�. �14�

Being combined with identity �9�, this gives the formula

G�,k = �g�
−1 + �� − �k�−1. �15�

One can recognize that this is exactly a DMFT expression for
the Green’s function. Therefore we conclude that for a prop-
erly chosen � a Gaussian approximation for the dual poten-
tial already yields a reasonable result, as DMFT does. It is
important to point out that DMFT works well for the whole
range of the parameters. In contrast, the Gaussian approxi-
mation for the atomic limit of initial model �4� makes no
sense. In that aspect, the dual potential V is indeed smaller
than U.

An argumentation can be presented to justify that the
DMFT value of � is a proper choice for Gaussian approxi-
mation �15�. One of the reasons is described in Appendix B.
It turns out that the Feynman minimization criterion for the
Gaussian trial action, being formulated for the dual en-
semble, gives exactly the DMFT hybridization function. An-
other argument is presented in Sec. II D.

Once the dual potential is taken into account, it yields a
correction to the DMFT result. It is useful to introduce the
dual self-energy

�dual � Gdual
−1 − Gdual

−1 , �16�

and the correction to the DMFT self-energy

�� � G−1 − G−1. �17�

With these quantities, we can re-express exact relation �9� in
a particularly simple form,

��,k�−1 = g� + ���,k
dual�−1. �18�

We note that this expression relates quite different quantities:
�dual and �� characterize the corresponding lattice problems
and carry, in general, both momentum and frequency depen-
dences, whereas g comes from the impurity model and is
local in space.

D. Diagram series: General properties and the choice of
hybridization function

The main idea of our method is to consider a diagram-
matic expansion with respect to the dual potential V. We will
later demonstrate that in point of fact low-order diagrams of
such a series bring important information about nonlocal cor-
relations. The basic reasoning for this is presented in Sec.
II C: since the value of V is in certain sense small, the first
few terms of the perturbation series with respect to V can
make sense. More detailed discussions about the small pa-
rameters of the theory are presented in Secs. II E and II F; let
us first present the general properties of the diagrams under
consideration.

The rules of diagram construction are quite similar to the
usual Matsubara diagram technique. The only difference
from the standard perturbation scheme is that the interaction
operator V is not purely of the fourth-order form f�f�f f , and
therefore vertices in the diagrams are not necessarily four
legged, but may formally have any even number of legs. For
choice �13�, these vertices are essentially 
�n�. They are con-
nected with the lines being the dual Green’s functions. Some
of the diagrams contributing to the dual self-energy are pre-
sented in Fig. 1.

We use the skeleton diagrams with renormalized Green’s
functions, so that the lines are complete Gdual and not Gdual.
The reason to use the skeleton-diagram expansion for the
dual self-energy is that it makes it possible to obtain conserv-
ing theories, similar to conventional diagram technique.25

The Baym criterion of a conservative theory is the existence
of a functional of the Green’s function ��G� such that ��

�G
=�. Once this functional is described by certain skeleton
diagrams, taking the derivative means just cutting the lines in
that diagram. For example, diagrams �a� and �b� for the self-
energy come from diagrams �a�� and �b��, shown in Fig. 2
�of course, care should be taken of the numerical factors�.
Second-order differentiation with respect to G gives the two-
particle quantities. Such a procedure automatically produces
a theory fulfilling the conservation laws for energy, momen-
tum, particle numbers, etc.

FIG. 1. Various diagrams for �dual. Diagrams �a�, �a��, and �a��
are vanished by condition �19�.

a bφ φ

FIG. 2. Two simple diagrams for Baym functional �dual�Gdual�.
Functional differentiation of these diagrams with respect to Gdual

produces diagrams �a� and �b� for self-energy.
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In our consideration, the usage of skeleton diagrams de-
scribes a corresponding Baym functional �dual�Gdual� with
the functional derivative being �dual. Therefore, it produces a
conservative approximation for the dual ensemble. Then it
turns out that exact transformations �9� and �A5� give a con-
serving description of the initial system. Simply, the conser-
vation laws imply certain selection rules for G and �, and
Eqs. �9� and �A5� clearly preserve those selection rules dur-
ing the transformation from dual to initial quantities. More
precisely, the conserving character of an approximation in
fact means that there exists some conserving dual action

S̃�f , f��, exactly corresponding to this approximation. Since
there is a one-to-one correspondence between S�f , f�� and
S�c ,c�� �see the end of Sec. II B�, we conclude that the initial

system described by a certain S̃�c ,c�� is also conserving.
Until now, the hybridization function � has formally not

been specified. Now, we establish a condition for � that cor-
responds to a particular condition for the diagrammatic se-
ries. Let us again consider the DMFT. Suppose that we want
to obtain the DMFT result without DMFT loops, that is,
using �� not fulfilling Eq. �B5�. Formally, it is possible: one
should just sum up all the diagrams containing a single ver-
tex �diagrams �a�, �a��, �a��, etc.�. Since these diagrams give
exactly the DMFT self-energy, such a procedure would in-
deed recover the DMFT result for an arbitrary hybridization
function. The special DMFT choice of � just allows one to
eliminate such an infinite summation since Eq. �B6� elimi-
nates all the diagrams containing a simple closed loop. It is
reasonable to keep this property in higher approximations,
that is, to require

G�,r=0
dual = 0 �19�

as a condition for �. Then, all the diagrams with simple
closed loops drop out from the calculation. Note that these
diagrams however should be taken into account while taking
the functional derivatives. For example, the DMFT vertex
part �dual=
�4� comes out from the differentiation of diagram
�a�. Finally, condition �19� obviously passes into Eq. �B6� at
the DMFT limit. Therefore, until the corrections to DMFT
are significant, one can approximate �� with the DMFT hy-
bridization function.

The vanishing of the closed loops seriously reduces the
number of the low-order dual diagrams. In most of the prac-
tical calculations presented below we consider a single dia-
gram �b�. It is clear that any reasonable expansion starts from
this perturbation, and that this diagram already incorporates
some nonlocal physics. The corresponding formula for the
dual self-energy reads �spin and orbital indices are omitted�

��,r
dual =

1

2	2 �
�+��=�1+�1


����1�2

�4� 
�2�1���
�4� G�1,r

dualG�2,r
dualG��,−r

dual .

�20�

E. Causal properties

Beyond conservation laws, the Green’s function should be
causal. The retarded Green’s function GR�t�, that is, an ana-

lytical continuation of G
 to the real-time axis, should vanish
for negative time:

GR�t � 0� = 0. �21�

In the Fourier representation, condition �21� implies the
analyticity of G� in the upper complex plane, as this follows
directly from the definition of the Fourier transform. The
inverse is also true. If the Fourier transform of a function is
analytical in the upper plane, the function is causal. To prove
this statement, it is enough to transform the integration con-
tour of the inverse Fourier transform away from the real axis.

Frequently, the causality principle is associated with the
positiveness of the imaginary part of the Green’s function in
the real-frequency domain. For dual Green’s function, this
can lead to certain misunderstanding. It is clear from condi-
tion �19� that the imaginary part of Gdual cannot be always
positive. However, this issue is purely formal. Condition �21�
itself does not imply that Im G� is positive. A trivial coun-
terexample is the function −GR. It fulfills Eq. �21� and has an
always-negative imaginary part. We will argue the same for
Gdual. It fulfills Eq. �21�, although its imaginary part is not
always positive.

Let us illustrate this statement at the zeroth order of the
theory, single-site DMFT. It has been proven1,11,12 that this
theory is causal, so G and g fulfill Eq. �21�. One can easily
check, from expressions �14� and �15�, that for the case of
DMFT, a simple relationship holds; Gdual=G−g. It is imme-
diately clear from this formula that since G and g are causal,
Gdual also fulfills Eq. �21�. Note again, condition �19� is ful-
filled in DMFT, and −Im G�

dual is therefore essentially non-
positive.

Let us now consider the dual fermion theory beyond
DMFT. We will show that if the hybridization function � is
casual, the resulting Green’s function is also causal. First of
all, the casuality of � is inherited from g and 
�n�. Therefore,
the dual system is characterized by the casual bare propaga-
tor Gdual=G−g and casual interaction operator. Therefore, the
theory with skeleton diagrams results in a causal Gdual.26 Fi-
nally, it should just be proven that the casuality Gdual means
the casuality of G. The latter statement follows from exact
relation �9�. Indeed, since ��g� does not have zeros in the
upper plane, g�

−1 is analytical. The same is true for the quan-
tity ��−��−1. Therefore, the entire right-hand side of Eq. �9�
is analytical in the upper plane. This implies the causality of
G.

In the calculation procedure described below, we always
start from a causal � and change it iteratively to deliver
condition �19�. We will argue that such an iteration procedure
preserves the causality of �. Therefore, the entire theory is
causal.

Finally, let us recall the issue of the positiveness of −Im G
in the complex upper plane. Actually, this is related with the
positivity of the residuals, as it follows from the Lehmann
representation G=��Zmn /�−�mn+ i�mn�. Here, the causality
follows from the positivity of �, whereas the requirement Z
�0 ensures that −Im G�0. For our theory, we were not able
to prove the positivity of the residuals formally. However, we
do not consider this as a serious drawback since our practical
calculations always produce undoubtedly positive residuals.
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F. Small parameter in the extreme cases

An important property of the DMFT approach is that it
becomes exact for the two opposite cases of a noninteracting
Gaussian system and of an extreme strong-coupling limit
corresponding to the atomic limit.1 The dual fermion formal-
ism inherits this property; moreover the corresponding small-
ness appears in the diagrams in a simple form. Let us first
consider the strong-coupling limit �k→0. It is useful to esti-
mate the DMFT dual Green’s function G, defined by formula
�14� and condition �19�. For a pure atomic limit �k=0, the
Green’s function is local, Gr�0=0. However, the local part of
the Green’s function also vanishes due to condition �19�.
Formally, G→0 as �→0. The smallness of � and � allows
the approximate estimation of the dual Green’s function near
the atomic limit. It gives G�k
g��kg�. Since the DMFT is
almost exact near the atomic limit, the same estimation is
valid for Gdual. Consequently, near the atomic limit the lines
in the dual diagrams carry a small factor �k.

On the other hand, for the opposite weak-coupling limit
U→0, the vertex parts of the impurity problem can be esti-
mated as 
�4��U, 
�6��U2, etc. Therefore, for the weak-
coupling limit the vertices in the dual diagrams are mani-
festly small.

The presence of a small parameter in these two limits
does not guarantee a good interpolation between them. It
should however be mentioned that the scheme performs well
if the corrections to DMFT are small: for this case we deal in
fact with a perturbation series around DMFT. The validity of
the method for more general situations should be checked in
practical calculation. This practical validity depends on the
particular choice of diagrammatic approximation for �dual. In
this context, it is worthy to discuss the choice of hybridiza-
tion function �.

G. Calculation procedure

In practical calculations the solution was obtained itera-
tively, similarly to the DMFT loop. The iterative scheme is
presented in Fig. 3. It includes the big �outer� and small
�inner� loops. The small loop is devoted to obtaining the dual
Green’s function and self-energy, given the solution of the
impurity model with certain �. It starts from some guess for

�dual, for instance, �dual
�0� =0. The dual Green’s function

�Gdual
−1 −�dual�−1 is substituted in formula �20� to produce a

new estimation for �dual. The procedure is repeated until con-
verging results are reached.

The big loop is very similar to the DMFT iterative proce-
dure. We start with some initial guess for � and solve an
impurity model. We use the weak-coupling continuous time
quantum Monte Carlo �CT-QMC� solver,27 which produces
both the Green’s function g and the four-point vertex 
�4� in
the frequency domain. Then we perform the inner loop to
obtain Gdual �this step is not necessary in DMFT since it uses
the bare dual Green’s function Gdual�. Finally, we take a new
guess for the hybridization function

�� → �� + �g�
−1 1

�G�,r=0
dual �−1 + g�

−1g�
−1 �22�

and repeat the self-consistent procedure. A value of the pa-
rameter ��1 was chosen to ensure better convergence. The
last formula is organized in such a way that: �i� its fixed point
clearly satisfies condition �19� and �ii� for �dual=0 it passes
into the DMFT update formula ��→��+��G�,r=0

−1 −g��. Of
course, only requirement �i� is actually necessary, so that
formula �22� is not unique. In particular, it is useful to con-
sider an update

�� → �� + �g�
−1G�,r=0

dual g�
−1. �23�

One can easily see that update �23� conserves causal proper-
ties of �, so that the convergence of iteration process �23�
proves the causality of the result. Such a convergence indeed
takes place for the calculations presented below. Note also
that near the fixed point G�,r=0

dual =0, formula �22� passes into
Eq. �23�, so that there is no much practical difference be-
tween these two formulas.

III. APPLICATION TO THE HUBBARD MODEL

In Secs. III A–III C, we present the results of our calcu-
lations for the 2D Hubbard model. We start with the half-
filled case with next-nearest-neighbor hopping t�=0 lattice.
We compare our data with direct QMC simulations on a
finite Hubbard lattice, which are relatively simple due to the
absence of the sign problem for the half-filled Hubbard
model.

Properties of the half-filled Hubbard model are well
known and are mostly related to the antiferromagnetic phe-
nomenon and Mott metal-insulator transition. Local mag-
netic moments on atoms are formed and tend to order into an
antiferromagnetic lattice due to the effective superexchange
coupling. At zero temperature, the antiferromagnetism arises
already at U=0+ because of the perfect nesting. At finite
temperature, the true antiferromagnetism is destroyed by the
long-range fluctuations. However, short-range antiferromag-
netic correlations are still present. Short-range antiferromag-
netic ordering manifests itself as the strong pseudogap in the
local electron spectral function.

We consider the system with t=0.25 at inverse tempera-
ture 	=20, with different values of U. Since the temperature
is relatively high, it is enough to use the reference data ob-

FIG. 3. �Color online� The scheme of calculation. The calcula-
tion includes “big” and “small” loops, marked with red and black
lines, respectively. The small loop is for determining the renormal-
ized dual Green’s function Gdual in a self-consistent way, for given
�, g, and 
�n�. The big loop is for determining �. Only the big loop
requires a solution of the impurity problem.
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tained just for the 8�8 lattice QMC simulation, with subse-
quent maximum-entropy continuation of the data to obtain
local density of states �DOS�. The results for paramagnetic
calculation are presented in Figs. 4 and 6 �thin solid line�.
These results show that the narrow antiferromagnetic
pseudogap is formed at approximately U=1.0. For larger U,
the DOS contains also a wider Mott gap, having a half-width
of about U /2. At U=2.0, the system shows essentially Mott-
insulator DOS. The effect of antiferromagnetism in this case
consists of the sharp shoulders of the Mott gap.

To understand better the physics of the half-filled Hub-
bard model, it is worthy to analyze the behavior of the elec-
tronic self-energy �. At small U, this is a small regular cor-
rection to the dispersion law �k. It follows from the weak-
coupling analysis that Im � is strongly anisotropic in this
regime, with peaks near �0, ��� , ��� ,0� points. In contrast,
for the truly antiferromagnetic gap, �k would have a pole at
the Fermi surface. The residue of this pole is the same at all
points of the Fermi surface. For large enough U this pole is
somehow shifted from the real-frequency axis due to long-
range thermal fluctuations. But the qualitative picture re-
mains the same: a sharp peak in Im �, with almost constant
magnitude along the Fermi surface.

It is well known that doping changes the physics of the
Hubbard model substantially. First of all, a few-percent dop-
ing suppresses the antiferromagnetism. At higher doping val-
ues there is a trend to d-wave superconductivity. A supercon-
ducting phase has been obtained in various cluster-DMFT
calculations13,28 near the optimal doping of about 15%. This
agrees well with the phase diagram of high-Tc cuprates.6 The
pseudogap formation in the doped Hubbard model was first
analyzed by the cluster-DMFT method �more specifically,
dynamical cluster approximation� in Ref. 29. For further ap-
plications of the DCA to the 2D Hubbard model, see Refs. 12
and 30–32. In the following consideration, we will not dis-
cuss the superconductivity itself, but we will address the so-

called Fermi-arc phenomenon. Essentially, this is an aniso-
tropic destruction of the Fermi surface in the pseudogap
regime. Only the parts of Fermi surface near the nodal direc-
tion remain well defined at low temperature. In the antinodal
direction, the spectral function at the Fermi level is vanish-
ingly small.

A methodological difference between the doped and the
undoped cases is that the sign problem makes direct lattice
simulations away from half filling practically impossible.33

Therefore, the reference point can only be the results of dif-
ferent approximate schemes or the experimental data.

A. Undoped case: Translationally invariant solution

First, we discuss the result of the dual fermion investiga-
tion without a spontaneous symmetry breaking, which means
that the impurity problem is assumed to have no spin polar-
ization. The data presented in this section have been partly
discussed previously as a Brief Report.19

The translationally invariant DMFT predicts a Mott tran-
sition at rather high value U�3.0 �for a bandwidth W=8t
=2.0�. It is important to point out that the density of states at
the Fermi energy is independent of U within the entire
Fermi-liquid phase. This is a consequence of the locality of
the self-energy in DMFT. Therefore, for U
1.5–3.0, the
approximation predicts a three-peak DOS which consists of
two Hubbard bands at �U /2 and a Kondo-type central peak
providing the “pinned” value of DOS at Fermi level.

This behavior is inconsistent with the reference data de-
scribed above. Actually, those data do not show a three-peak
structure because of the antiferromagnetic pseudogap. Be-
sides antiferromagnetism, the DMFT sufficiently overesti-
mates the critical value of U for the Mott transition: accord-
ing to the reference data, the system already shows DOS of
the Mott-insulator nature at U
2.0 �see Fig. 4�.

Let us take the leading dual diagram �b� into account. The
corresponding data are presented in Figs. 4 and 5. Since the
self-energy is not local anymore, there is no pinning at Fermi
level, and the Kondo-type peak disappears. Furthermore, the
self-energy momentum dependence agrees well with the
qualitative picture described above. The upper panel of Fig.
5 presents contour plots for Im ��=0,k at U=1.0 and U=2.0
�the data are obtained by a polynomial extrapolation from the
Matsubara frequencies�. The value of Im ��=0,k grows dra-
matically as U changes from 1.0 to 2.0. At larger U, there is
an expected sharp non-Fermi-liquid peak in Im ��=0,k at
Fermi level, without a remarkable anisotropy along Fermi
surface. At smaller U, the peak is broadened, with maxima
near Van Hove singularities. The renormalized dispersion
law �k+Re ��=0,k is now also in qualitative agreement with
numerical data, as shown in the lower panel of Fig. 5. In
these graphs, �k+Re ��=0,k is compared with the reference
data for a 10�10 lattice. There is a qualitative difference
between the results for U=1.0 and U=2.0: for the latter case
the corrections are quite large so that there is a dependence
resembling �k

−1. The superiority of the result against DMFT
should be stressed, as there is no k dependence of � in the
DMFT approach.

Let us point out the drawbacks of the present results. First
of all, there is still no perfect quantitative agreement with the

FIG. 4. �Color online� Local Green’s function at Matsubara fre-
quencies and density of states for undoped Hubbard model at t
=0.25,U=2.0,	=20. The results of DMFT and the calculation with
nonlocal diagram correction �b� are compared with the reference
data obtained for 8�8 lattice QMC simulation.
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reference data, although the DMFT result is improved re-
markably. The source of this discrepancy becomes clear
when the DOS for U=1.0 is plotted �Fig. 6�. The pseudogap
is much narrower in this case. It resembles the situation for
U→ +0 at zero temperature; then an antiferromagnetic or-
dering appears due to long-range nesting phenomena. It is
evident from Fig. 6 that the calculation with dual diagram �b�
does not reproduce this pseudogap at all. Back to the results
for U=2.0, the pseudogap in our calculation appears to be
not as deep and not as steep as it should be �Fig. 4�. We have
tried to take higher diagrams into account and found out that
it does not help much. We conclude that the dual fermion
corrections, as they were considered above, improve the de-
scription of short-range Mott physics, but they do not take
the long-range antiferromagnetic fluctuations into account.

To explain this failure, let us recall the Hubbard model
with small U at zero temperature. As pointed above, our
technique passes into weak-coupling diagram expansion for
U→0. But it is clear that the weak-coupling expansion is
suitable for the metallic phase only and cannot reproduce the
antiferromagnetism since this is a nonperturbative
phenomenon.34 Evidently, the dual fermion expansion inher-

its this property. The best possible achievement within this
framework would be to obtain a phase transition, where the
corresponding susceptibility diverges.35

There are two ways to take antiferromagnetism into ac-
count. First, one can switch from single-site to cluster
DMFT. Thus the antiferromagnetic phase transition main-
tains the periodical symmetry of the superlattice made of
clusters; there is no problem with nonanalyticity in this case.
Indeed, various cluster-DMFT approaches11,12 reproduce the
antiferromagnetic gap. The dual fermion corrections can be
used to improve the accuracy of those methods.35,36

The second option is to stay with the single-site starting
point, but allow for the antiferromagnetic ordering on the
lattice. In this case, the effective impurity problem is spin
polarized. It is known that such an approach indeed works
quite well already at the DMFT level.37 It can be expected
that the dual fermion technique can effectively provide the
correction in this case. Section III B describes such a theory
and the corresponding results.

B. Undoped case: Antiferromagnetic symmetry breaking

For clarity, let us present the explicit expressions for this
case. The antiferromagnetism means that the primitive cell is
doubled. The dual Green’s function, as well as other single-
electron quantities of the antiferromagnetic state, depends on
the difference of the two coordinate arguments and single
spin: G�,j,s,j�,s�

dual =G�,j−j�,s
dual �note that s� is defined by s and r

= j− j��. Given G�,r,s
dual , it is easy to obtain ��,r,s

dual from formula
�20�. In this expression, the spin dependence of � comes
from the spin polarizations of Gdual and, in principle, of the
vertex 
�4�. However, the numerical result for the latter quan-
tity appears to be quite noisy. Therefore, we neglected the
spin polarization of 
�4�, performed an averaging over spin

FIG. 5. �Color online� Momentum dependence for the self-
energy function at Fermi energy, obtained with diagram �b� within
the translationally invariant approximation for the undoped Hub-
bard model. Data are shown at t=0.25,	=20, for U=1.0 and U
=2.0. Upper panel: contour plots for k dependence of the imaginary
part of the self-energy. Lower panel: renormalized dispersion law
�k+Re ��=0,k, compared with the reference data obtained for 10
�10 lattice. The figure has been published previously in a Brief
Report �Ref. 19�.

FIG. 6. �Color online� Density of states for undoped Hubbard
model at t=0.25,U=1.0,	=20. The result of the translationally
invariant calculation with diagram �b� is compared with the refer-
ence data for 8�8 lattice. An antiferromagnetic pseudogap is pro-
nounced in the reference data and does not appear in the
approximation.
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orientation, and thus operated with the tensor of the “para-
magnetic” symmetry. Such a tensor has the two independent
components 
��
ssss

�4� and 
��
ss−s−s
�4� , so that expression

�20� becomes

�
�,r,s

dual

=
1

2	2 �
�+��=�1+�1


��1���2
� 
�2���1�

� G�1,r,s
dual G�2,r,s

dual G��,−r,s
dual

+
1

	2 �
�+��=�1+�1


��1���2
� 
�2���1�

� G�1,r
dualG�2,r,−s

dual G��,−r,−s
dual .

�24�

We believe that this approximation is valid since the most
important contribution to the symmetry break arises from the
spin polarization of the single-electron quantities g, �, and
�dual, entering the expression for Gdual.

The next step is to write explicitly the definition �dual
=Gdual

−1 −Gdual
−1 in the momentum space. Here, the 2�2 matri-

ces must be used, as the momentum is conserved up to Q
= �� ,��. Let us denote G�,j−j�

dual�0�= 1
2 �G�,j−j�,s+G�,j−j�,−s� and

G�,j−j�
dual�AF�= 1

2 �G�,j−j�,s−G�,j−j�,−s�. It is easy to check that the
definition �dual=Gdual

−1 −Gdual
−1 stays fulfilled with the matrix

� Gk
dual�0� Gk

dual�AF�

Gk
dual�AF� Gk+Q

dual�0� �
used for Gdual, and similarly for �dual ,Gdual. This gives a way
to construct Gdual from a given �dual and thus close the inner
iteration loop. Self-consistency condition �19� remains un-
changed, so that the big loop is essentially the same. Finally,
exact relationship �9� can be written in the matrix form, giv-
ing thus a complete description of the antiferromagnetic
state. Of course, the same treatment with �dual=0 corre-
sponds to the antiferromagnetic DMFT.

Actually, once the antiferromagnetism is taken into ac-
count, the DMFT result itself is not too bad. The correspond-
ing data are presented in Fig. 7, where we show how the
Green’s function at the lowest Matsubara frequency depends
on U. At small U, the system is a normal Fermi liquid. There
are small corrections due to the correlations. Of course,
DMFT cannot reproduce the anisotropy of the self-energy,
but the description of local Green’s function is pretty good.
For large U, the system exhibits a strong antiferromagnetism,
which is destroyed only at long-range scale. In DMFT, the
antiferromagnetic ordering appears in this range. The sim-
plest way to take the long-range fluctuations into account
within DMFT framework is to average over the two antifer-
romagnet sublattices. This eliminates the real part of the
Green’s function. A comparison of Im G�/	,r=0 with lattice
QMC simulations again shows good agreement. �The antifer-
romagnetic regime starts from U
0.85, as the inset of Fig. 7
shows.� The largest deviations of the DMFT result from the
reference data occur in the intermediate regime U
1. Prob-
ably, in this regime the fluctuations are essentially nonlocal
but still midrange. Therefore they cannot be described as a
static long-range antiferromagnetic ordering.

The same Fig. 7 presents the result obtained with the first
nonlocal dual diagram �b�. In this calculation, we again allow
for the antiferromagnetism. The symmetry breaks down at

almost the same value of U, and the magnetization coincides
with the DMFT result. There is however a remarkable cor-
rection to Im G�/	,r=0. Near both limiting cases, the reference
dependence is reproduced very well since diagram �b� yields
a leading-order correction to the already good DMFT result.
In the “critical” intermediate regime, the situation is not as
good. However, the correction still behaves regularly and
shows the correct trend. It is also important that while the
DMFT data for Im G�/	,r=0 show a clear kink at the transition
point, the dual-diagram correction makes the curve much
smoother. This is certainly more physical because the refer-
ence lattice QMC data contain no singularities since there is
no true phase transition.

We did not found that any particular higher-order diagram
improves the result for G�/	,r=0 significantly. This indicates
that a large number of higher-order diagrams contribute to
the result. Actually, this is an expectable situation near the
critical point. However, it was found that higher-order ladder
corrections give a particularly important contribution to the
spectral function of the system. Let us illustrate this state-
ment, using the data for U=1.0. The Green’s functions at
Matsubara frequencies for this case are plotted in Fig. 8.
Since the points with dual-diagram corrections are very close
to the reference ones and can hardly be distinguished, we
plot also the difference from the reference lattice QMC result
in the inset of Fig. 8. Figure 9 shows the maximum-entropy
guess for the corresponding DOS. Since the problem of ana-
lytical continuation of the Green’s function to the real-
frequency axis is known to be ill posed, we took special
measures while calculating the density of states. The Green’s
functions are computed with high accuracy, and the
maximum-entropy analytical continuation is performed with
the same a priori parameters for all curves. This ensures that
the graphs for the spectral function can be compared with
each other. The spectral function clearly illustrates the physi-
cal origin of the discrepancy between the DMFT and refer-
ence data. Indeed, since DMFT replaces the nonlocal dy-

FIG. 7. �Color online� Results of DMFT calculation and the
scheme with diagram �b�, taking the antiferromagnetic ordering into
account. The results for local part of the Green’s function at lowest
Matsubara frequency are compared with reference data for undoped
Hubbard model at t=0.25,	=20. QMC calculations at 8�8 lattice
are used for reference.
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namical antiferromagnetic correlations with static ordering, it
overestimates the antiferromagnetism in the model. There-
fore the pseudogap appears to be too deep; its shoulders and
Hubbard bands in the DMFT graph are narrower than they
should be. The situation is partly improved for diagram �b�:
the shoulders and Hubbard bands are closer to the reference
curve although the estimation at Fermi energy looks worse.
The serious improvement arises from the next diagram of the
ladder, as the dashed-dotted curve in Fig. 9 shows. This is

very expectable because the long-range antiferromagnetic
fluctuations are exactly described by these ladders. On the
other hand it is interesting to observe from the inset of Fig. 9
that this diagram does not improve the result for G�/	,r=0, but
makes its deviation from the reference data more regular.

C. Doped Hubbard: Fermi-arc formation and flattening
of the dispersion law

Here we present the results obtained with the dual fer-
mion technique for the pseudogap regime, which corre-
sponds to the doping below optimal and relatively high tem-
perature. We use the rotationally invariant approximation, so
the effects of superconductivity and antiferromagnetism were
not included in the theory. However it turns out that the
theory still captures the physics responsible for the Fermi-arc
formation, and yields results which compare well to experi-
mental data.

To make the simulation more realistic we introduce the
next-neighbor hopping term t�. The parameters of the model
are U=4.0, t=0.25, t�=−0.075,	=80. The ratio t� / t
−0.3
roughly corresponds to the case of YBa2Cu3O7.38 The rela-
tively large value of U=2W was taken because there is ex-
perimental evidence that the system should be a Mott insu-
lator at small doping, which requires U�1.5W
3.0. The
temperature used roughly corresponds to 100–150 K, which
is a proper value for the pseudogap phenomena in high-
temperature superconducting materials. Most of the results
are presented on doping level of 14%.

Figure 10 presents the results obtained for the self-energy
��,k at the nodal and antinodal points of the Fermi surface.
The position of Fermi surface was defined as a maximum of
the spectral density. A polynomial extrapolation for �� was
constructed to obtain the imaginary part of self-energy at
Fermi level. One can observe a remarkable difference in the
low-energy limit of ��,k at the nodal and antinodal points:
the corresponding values of Im��=0,k differ approximately
by a factor of 2. The spectral function Ak= �2��−1Im G�=0,k
for the entire Brillouin zone is mapped in Fig. 11 for 14%
doping. The Fermi surface in the antinodal direction is quite
diffuse, in accordance with the experimental results.

It is worthy to consider the spatial dispersion of the self-
energy function. The map of Im ��=0,k is presented in Fig.
12, whereas Fig. 13 shows the behavior of this quantity
along the �� ,��-�� ,0�-�0,0�-�� ,�� contour. The data are
obtained with a polynomial extrapolation from Matsubara
axis. The estimated error bar of the extrapolation procedure
is 0.01. An interesting property of the data obtained is that
��=0,k appears to be substantially nonlocal, but is still short
ranged. Actually, the data of Figs. 12 and 13 can be approxi-
mately described by the next-neighbor approximation. That
is, the most important components of ��=0,R are �R=�0,0�,
�R=�0,1�, and �R=�1,1�. The dotted line in Fig. 13 is produced
with these Fourier components only, and it is quite consistent
with the initial curve except at the points �� ,0� and �0,��,
where the self-energy is flattened. It is worthy to notice also
that Im ��=0,k is maximal there. Interestingly, variational
cluster calculations39 demonstrate that near the nodal point,
in contrast with the antinodal one, the superconducting gap

FIG. 8. �Color online� Imaginary part of the local Green’s func-
tion of undoped Hubbard model at Matsubara frequencies. The data
are shown for U=1, t=0.25,	=20. The reference data are com-
pared with the results of approximate schemes taking antiferromag-
netism into account. The results of DMFT calculation, of the
scheme with diagram �b�, and of the approximation taking two dia-
grams �b� and �e� into account are shown. Inset shows the deviation
of the approximate results from reference data.

FIG. 9. �Color online� Density of states of the undoped Hubbard
model, restored from the data presented in Fig. 8. The approximate
result becomes closer to reference data as diagrams �b� and �e� are
taken into account.
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�that is, anomalous part of the self-energy� also can be de-
scribed in the nearest-neighbor approximation.

Figure 14 shows the effective quasiparticle energy, de-
fined by the formula

�k
eff = Re��k − � + ��=0,k

1 + i
�

��
�k,�=0 � . �25�

The initial dispersion law �k is shown in the same figure with
thin line. One can see a narrowing of the quasiparticle band,
mainly due to the ���,k /�� term. The latter is large due to
closeness to the Mott transition point. Another important
change is again the flattening of the curve near �0,�� point.

A flattening of the dispersion curve near the antinodal
point was earlier predicted7,9 as due to a non-Fermi-liquid
behavior when the Fermi energy crosses Van Hove singular-
ity. The main conclusion of Refs. 7 and 9 is that in the
strong-interaction regime Van Hove point expands to a finite

region of the Fermi surface, where the dispersion law is flat-
tened. The k dependence of the self-energy and vertex func-
tion is of crucial importance for this phenomenon. It is wor-
thy to note that cluster calculation hardly can reproduce the
result for the Van Hove behavior because the flattened region
is much smaller that the entire Brillouin zone.

We also performed calculations for other dopings. Figure
15 is devoted to Im � at 7% doping. Smaller doping makes
the system closer to Mott insulator. Therefore the value of
Im � is substantially larger than for the 14% doped system
�Figs. 10 and 13�. The flattened regions disappear in this
case. However, there is still a clear difference between the
nodal and antinodal directions in the low-energy limit: the
values of Im ��=0 at these points differ by a factor of 2.FIG. 10. �Color online� Self-energy function of tt� Hubbard

model ��,k at nodal and antinodal points of the Fermi surface at
Matsubara frequencies. Diagram �b� is used for the calculations.
The data are plotted for 14% doping tt� Hubbard model at t
=0.25, t�=−0.075,U=4.0,	=80. Upper panel: real and imaginary
parts of ��,k. Lower panel: Im ��,k in a low-frequency region and
its approximation with a seventh-order polynomial.

FIG. 11. �Color online� Spectral function A�=0,k at Fermi level:
the calculation with diagram �b� and polynomial extrapolation from
Matsubara frequencies. Parameters of the Hubbard model are the
same as in Fig. 10.

FIG. 12. �Color online� Imaginary part of the self-energy
Im ��=0,k at Fermi level: the calculation with diagram �b� and poly-
nomial extrapolation from Matsubara frequencies. Parameters of the
Hubbard model are the same as in Fig. 10. The red line indicates
Fermi surface.
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Finally, a few words should be said about the region near
�0,0� point in Fig. 13, where our polynomial fit predicted
slightly positive Im � �that corresponds to Im G�0�. We
argue here that this is merely an artifact of the extrapolation
procedure. Indeed, as it is discussed in Sec. II E, negative
Im G in our theory could only result from a negative re-
sidual. However, the graph of � at Matsubara frequencies for
all k points is qualitatively similar to those shown in the
upper panel of Fig. 15. It is obvious these graphs have a
negative derivative at Fermi energy, so that the residual Z
= �i− ��

�� �−1 must be positive.

IV. CONCLUSIONS

To summarize, the transformation to dual fermion vari-
ables completely reconstructs perturbation theory, starting

with the zeroth-order approximation which is accurate in the
limits of both very weak and very strong interactions. As a
result, taking into account just a few lower-order diagrams
gives quite satisfactory results, without having to resum in-
finite series of diagrams. Starting with DMFT as the best
local approximation, we are able to take into account nonlo-
cal corrections in a regular perturbative way. In contrast with
several cluster approaches, the method is exactly translation-
ally invariant and allows us to analyze how different parts of
the reciprocal space are distinctly affected by correlation ef-
fects.

This approach can be set up either in phases with long-
range order �antiferromagnetism, superconductivity� or in
phases without long-range order �normal state� by not allow-
ing for symmetry breaking. The present paper mostly deals
with the latter case. By doing so, we could focus on physical
effects that are not directly related to incipient long-range
order. In particular, we showed that the anisotropic destruc-
tion of quasiparticles and the Fermi surface �at least as pre-
sented in Figs. 10–14� is not due to precursor effects of an-
tiferromagnetism �or superconductivity� as soon as the
intermediate- and strong-coupling regimes are entered. In-
deed, it is associated with quite short-range physics, as illus-
trated by the fact that only the short-range components of the
self-energy are found to have significant magnitude. This ob-

FIG. 13. �Color online� Imaginary part of the self-energy
Im ��=0,k at Fermi level: the calculation with diagram �b� and poly-
nomial extrapolation from Matsubara frequencies. Solid line shows
the same data as those presented in Fig. 12. Dotted line is a fit with
the next-neighbor Fourier components. Arrows mark the flattened
region at the antinodal direction. Positive sign of Im ��=0,k in a
small region near the �0,0� is probably an artifact of the polynomial
extrapolation procedure.

FIG. 14. �Color online� Quasiparticle dispersion law, defined
from formula �25� �thick line�, compared with initial dispersion
�thin line�. Model parameters are the same as in Figs. 10–13. Ar-
rows mark the flattening of the Van Hove singularity.

FIG. 15. �Color online� Imaginary part of the self-energy func-
tion for the 7% doped system. Other parameters of the tt� Hubbard
model are the same as in Figs. 10 and 13. Upper panel: Im � at the
nodal and antinodal points of the Fermi surface, and its polynomial
fit at Matsubara frequencies. Lower panel: low-energy behavior of
Im � at the �� ,��-�� ,0�-�0,0�-�� ,�� contour.
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servation also provides some support to cluster extensions of
DMFT. Although the destruction of quasiparticles in a
momentum-selective way is adequately captured by this ap-
proach and associated with short-range correlations, more
work is required �possibly including symmetry breaking and
incipient long-range order� in order to reach a proper de-
scription of the pseudogap formation and of its dependence
on the doping level and on the t� / t ratio.
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APPENDIX A: EXACT RELATIONS FOR HIGH-ORDER
CUMULANTS

Similarly to exact relationship �9� between the initial and
dual Green’s functions, the one-to-one correspondence be-
tween higher-order momenta for the initial and dual systems
can be established. Particularly, the formula for the fourth-
order Green’s function was presented and discussed
previously.35 It was shown that the two-particle excitations in
the original and dual systems are identical. Here, we use the
generating functional approach, which allows us to establish
the general structure of such relationships for high momenta,
and extend the conclusion about the two-particle excitations
to all collective excitations, involving an arbitrary number of
particles.

We start from the expression for action �8�, which in-
cludes both initial and dual variables. Then we introduce the
independent variations in initial and dual energies:

S�c,c�, f , f�;u,v� = S�c,c�, f , f�� + u12c1
�c2 + v12f1

�f2,

�A1�

where u and v are infinitesimal and a summation over repeat-
ing indices is implied.

One can see that Taylor series of the functional

F�u,v� = ln� e−S�c,c�,f ,f�;u,v�DfDf�DcDc� �A2�

with powers of u and v correspond, respectively, to the cu-
mulants of initial and dual systems. We recall that the
second-order cumulant is the Green’s function, and higher-
order cumulants are proportional to corresponding vertex
parts. For example, the fourth-order cumulant is
��2F /�u3�2��u4�1��=X1234−G23G14+G13G24 �X is the two-
particle Green’s function�, whereas the fourth-order vertex is
�1234

�4� =G11�
−1 G22�

−1 ��2F /�u3�2��u4�1��G3�3
−1 G4�4

−1 .
To establish a relation between the cumulants, let us inte-

grate over f� , f in the previous formula. We obtain

F�u,v� = F0�u,v� + ln� e−S�c,c�;u,v�DcDc�,

F0�u,v� = − ln det�I + �� − ���−1v�−1� ,

S�c,c�;u,v� = S�c,c�� + ��c�k�
� c�k� + �u12 − M12�c1

�c2,

M = ��� − ��−1 + �−1v�−1�−1. �A3�

Symbol I in the second line is the matrix unity, and the
second term is the product of the corresponding matrices.
The fourth line reads similarly.

The last expressions clearly show that the derivatives of
F�u ,v� with respect to u and v are related. A comparison of
the first derivatives, for example, allows one to reproduce
formula �9�. The last term of Eq. �9� comes from the differ-
entiation of F0.

Let us consider the fourth-order cumulants
��2F /�u32�u41� and ��2F /�v32�v41�. First of all we note that
neither indices 1 and 2 nor indices 3 and 4 should coincide
because otherwise both cumulants vanish due to the Fermi-
operator algebra. For the case of different indices, the differ-
entiation is quite simple and gives, after setting �=g−1, for-
mula �29� of Ref. 35:

�2F

�u32 � u41
= L11�L22�

�2F

�v3�2� � v4�1�
R3�3R4�4. �A4�

Here L and R are matrix inverses of ��−��−1g and g��
−��−1, respectively. It should be emphasized that this expres-
sion does not contain any extra additive terms, in contrast to
formula �9�. Formally this is because the second derivative
��2F0 /�v32�v41� vanish, as one can check straightforwardly.
Physically this means that the two-particle excitations in the
original and dual systems are identical.35

It might be also instructive to re-express the last formula
in terms of vertex function. Setting also �=g−1, one obtains

�1234 = L11�
� L22�

� �1�2�3�4�
dual R3�3

� R4�4
� , �A5�

where L�= �1+�dualg�−1 and R�= �1+g�dual�−1. One can see
that the obtained formulas are formally valid also for the case
of coinciding indices, when both left- and right-hand sides
vanish.

An advantage of the presented approach is that the deri-
vation of the formulas for sixth- and higher-order vertex
parts appears to be literally the same as for the fourth-order
one. All the argumentation about the absence of the coincid-
ing indices and vanishing of the high derivatives of F0 is
valid for that case. Therefore formula �A5� is valid for vertex
parts of any order; just a number of indices and multipliers
L� ,R� should be changed. From the physical point of view,
we conclude that all collective excitations of the initial and
dual ensembles are the same.

APPENDIX B: FUNCTIONAL MINIMIZATION, RELATION
TO DMFT, AND SELF-CONSISTENCY CONDITION

It is clear from the present consideration that a proper
choice of the hybridization function � is crucial. A
functional-minimization scheme is suitable to clarify this is-

sue. Let us introduce a trial action S̃�f , f��. For clarity, we put

the subscript S̃ at the angular brackets in this appendix, to
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emphasize that the averaging is over the system with trial

action S̃. We consider Feynman’s variational functional


S̃�S̃ + ln� e−S̃DfDf� − 
S�S̃ − ln� e−SDfDf� = max.

�B1�

A straightforward variation S̃→ S̃+�S gives an extremum
condition


�S − S̃��S�S̃ = 
�S − S̃��S̃
�S�S̃. �B2�

For an arbitrary �S, this indeed means that the extremum of

Eq. �B1� is delivered by S̃=S, up to an additive constant. In
this case Eq. �B1� vanishes. The larger value of Eq. �B1�
corresponds to the better approximation.

There is an important point: since dual action depends on
�, condition �B1� can be used to determine the optimal �.
The variation with respect to � gives

�
S�S̃

��
= 0. �B3�

Here we took into account that variations in S̃ and � are
independent, so the first two terms of Eq. �B1� do not vary
with �. As for the last term, it is exactly ln Z and therefore
independent of � as well.

Now, recalling S�f , f��=−ln	e−S�c,c�,f ,f�� and substituting
Eq. �8�, we obtain after certain transformations that Eq. �B3�
corresponds to the condition

G�,r=0 = 
gimp�f i, f i
���S̃,

gimp�f i, f i
�� =

� c�i
� c�ie

−Ssite�cici
�f if i

��Dci
�Dci

� e−Ssite�cici
�f if i

��Dci
�Dci

. �B4�

Here Ssite is defined by formula �10� and Gr=0=N−1�kGk is
local part of the Green’s function. While deriving these for-
mulas, it is useful to take into account that �=g−1 is just a
scaling factor standing at f� , f , and there is no need to vary
this quantity: one can vary with respect to � at fixed � and
set �=g−1 afterward.

Actually, criterion �B4� has a very clear meaning: local
part of the Green’s function equals the Green’s function of

the single-site action Ssite, averaged over the fluctuations of f .
Neglecting these fluctuations, one obtains just a DMFT con-
dition for hybridization function; that is, G�,r=0=g�.

To make the consideration more clear, let us first consider
the Gaussian approximation for dual variables, S̃=−Gdual

−1 f�f .
Let us show for this Gaussian trial action, the DMFT condi-
tion

G�,r=0 = g� �B5�

satisfies Eq. �B4� exactly �call this statement T1�. The proof
is based on the observation that condition �B5� is equivalent
to the requirement that the local part of dual Green’s function
equals zero,

Gr=0
dual = 0, �B6�

as one can easily check with formulas �14� and �15�. Further,

since S̃ is Gaussian, formula �B6� means that all local mo-
menta 
f i

�f i� , 
f i
�f if i

�f i� , . . . equal zero. It means that local fluc-
tuations of f , f� are virtually absent; therefore 
g�

imp�f , f���
=g� and Eq. �B4� becomes Eq. �B5�. To obtain a formal
proof, one should consider an average of the Taylor series for
gimp�f , f��. This series starts from g�, whereas the average of
any higher term vanishes. This proves T1.

Next, it is possible also to show that the DMFT Green’s
function is optimal with respect to the variations in the
Gaussian trial action �call this statement T2�. With a varia-

tion S̃=−Gdual
−1 f�f → S̃=−Gdual

−1 f�f +0f1
�f2, formula �B2� be-

comes


�S + Gdual
−1 f�f�f1

�f2�S̃ = 
S + Gdual
−1 f�f�S̃
f1

�f2�S̃. �B7�

The essential point is again that since all local momenta of
f , f� are vanished because of Eq. �B6� and the dual potential
V is local in space, all the nonlinearity drops out from Eq.
�B7�. It means that both left- and right-hand sides of Eq. �B7�
equal the same value if −Gdual

−1 f�f equals the Gaussian part of
the dual action. This proves T2. Thus, we have shown that
the DMFT procedure can be considered as the Gaussian ap-
proximation for the dual variables, which is optimal in the
sense of Feynman minimization criterion, with respect to
both trial action and hybridization function.

Beyond the Gaussian trial action, an analytical treatment
of extremal criterion �B1� is hardly possible. Therefore, in
the main body of the theory we treat the dual system pertur-
batively, using the diagram series with respect to V and the
hybridization function defined from condition �19�.

1 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 �1996�.

2 T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism
�Springer, Berlin, 1985�.

3 A. C. Hewson, The Kondo Problem to Heavy Fermions �Cam-
bridge University Press, Cambridge, 1993�.

4 T. Giamarchi, Quantum Physics in One Dimension �Oxford Uni-
versity Press, Oxford, 2004�.

5 P. W. Anderson, The Theory of Superconductivity in the High-Tc

Cuprates �Princeton University Press, Princeton, NJ, 1997�.
6 D. J. Scalapino, Phys. Rep. 250, 329 �1995�.
7 I. E. Dzyaloshinskii, J. Phys. I 6, 119 �1996�.
8 C. J. Halboth and W. Metzner, Phys. Rev. B 61, 7364 �2000�;

Phys. Rev. Lett. 85, 5162 �2000�.
9 V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Rev. B

64, 165107 �2001�; Phys. Rev. Lett. 89, 076401 �2002�.

RUBTSOV et al. PHYSICAL REVIEW B 79, 045133 �2009�

045133-14



10 J. Schafer, M. Hoinkis, Eli Rotenberg, P. Blaha, and R. Claessen,
Phys. Rev. B 72, 155115 �2005�.

11 G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, O. Par-collet,
and C. Marianetti, Rev. Mod. Phys. 78, 865 �2006�.

12 T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.
Phys. 77, 1027 �2005�.

13 A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 62, R9283
�2000�.

14 K. Haule and G. Kotliar, Phys. Rev. B 76, 104509 �2007�.
15 A. I. Poteryaev, A. I. Lichtenstein, and G. Kotliar, Phys. Rev.

Lett. 93, 086401 �2004�.
16 A. Toschi, A. A. Katanin, and K. Held, Phys. Rev. B 75, 045118

�2007�.
17 H. Kusunose, J. Phys. Soc. Jpn. 75, 054713 �2006�.
18 C. Slezak, M. Jarrell, Th. Maier, and J. Deisz, arXiv:cond-mat/

0603421 �unpublished�.
19 A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys.

Rev. B 77, 033101 �2008�.
20 A. N. Rubtsov, Phys. Rev. B 66, 052107 �2002�.
21 S. Sarker, J. Phys. C 21, L667 �1988�.
22 D. Boies, C. Bourbonnais, and A.-M. S. Tremblay, Phys. Rev.

Lett. 74, 968 �1995�.
23 T. D. Stanescu and G. Kotliar, Phys. Rev. B 70, 205112 �2004�.
24 A. Georges and J. S. Yedidia, J. Phys. A 24, 2173 �1991�.
25 G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 �1961�; G.

Baym, ibid. 127, 1391 �1962�.

26 C. Itzykson and J.-B. Zuber, Quantum Field Theory �McGraw-
Hill, New York, 1980�.

27 A. N. Rubtsov, arXiv:cond-mat/0302228 �unpublished�; A. N.
Rubtsov and A. I. Lichtenstein, JETP Lett. 80, 61 �2004�; A. N.
Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev. B 72,
035122 �2005�.

28 Th. Maier, M. Jarrell, Th. Pruschke, and J. Keller, Phys. Rev.
Lett. 85, 1524 �2000�.

29 C. Huscroft, M. Jarrell, Th. Maier, S. Moukouri, and A. N. Tah-
vildarzadeh, Phys. Rev. Lett. 86, 139 �2001�.

30 A. Macridin, M. Jarrell, T. Maier, P. R. C. Kent, and E.
D’Azevedo, Phys. Rev. Lett. 97, 036401 �2006�.

31 T. A. Maier, M. Jarrell, and D. J. Scalapino, Phys. Rev. B 74,
094513 �2006�.

32 A. Macridin and M. Jarrell, Phys. Rev. B 78, 241101�R� �2008�.
33 D. R. Hamann and S. B. Fahy, Phys. Rev. B 41, 11352 �1990�.
34 A. Kampf and J. R. Schrieffer, Phys. Rev. B 41, 6399 �1990�.
35 S. Brener, H. Hafermann, A. N. Rubtsov, M. I. Katsnelson, and

A. I. Lichtenstein, Phys. Rev. B 77, 195105 �2008�.
36 H. Hafermann, S. Brener, A. N. Rubtsov, M. I. Katsnelson, and

A. I. Lichtenstein, Pis’ma Zh. Eksp. Teor. Fiz. 86, 769 �2007�.
37 R. Chitra and G. Kotliar, Phys. Rev. Lett. 83, 2386 �1999�.
38 O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, J.

Phys. Chem. Solids 56, 1573 �1995�.
39 M. Aichhorn, E. Arrigoni, Z. B. Huang, and W. Hanke, Phys.

Rev. Lett. 99, 257002 �2007�.

DUAL FERMION APPROACH TO THE TWO-DIMENSIONAL… PHYSICAL REVIEW B 79, 045133 �2009�

045133-15


